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Finite-Size Scaling Corrections for the 
Eight-Vertex Model 
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Finite-size scaling corrections are calculated analytically for two of the maximal 
eigenvalues of the transfer matrix in the isotropic eight-vertex model. The value 
c = 1 for the conformal anomaly of the Virasoro algebra is confirmed. 

KEY WORDS: Finite-size scaling; eight-vertex model; conformal invariance. 

1. I N T R O D U C T I O N  

Recently, de Vega and Woynarovitch (j~ have shown how to derive the 
leading-order finite-size corrections analytically for any model that is 
soluble by the Bethe ansatz, The method has been applied to the ground- 
state energy of the X X Z  Heisenberg chain in its critical region, (2 4) and the 
results have been related to critical indices of the model using conformal 
invariance. (5) Now the X X Z  model is just the quantum Hamiltonian 
corresponding to the critical eight-vertex model in its extreme anisotropic 
limit. Here we set out to complement the above results by deriving similar 
finite-size corrections for the isotropic eight-vertex model. 

2. F INITE-SIZE SCALING CORRECTIONS FOR THE 
E IGHT-VERTEX M O D E L  

To save space, we shall employ the notation of J o h n s o n  e ta l .  (b~ 

(JKM), who rederived Baxter's results (7'81 for the eight-vertex model using 
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an integral equation method. The eigenvalues T(v) of the transfer matrix 
satisfy the equation 

T(v) Q ( v ) = ~ ( v + , ) Q ( v - Z , ) + r  (2.1) 

where 

r = [p0(0) h(v)] N (2.2a) 

( ,wv' I 7, Q(v) = exp \ -  "S--U-j,,,,k 11 h(v - vj) (2.2b) 
j = l  

h(v) = H(v) O(v) (2,2c) 

Here N =  2r is the number of vertices in a row, H(v) and O(v) are standard 
elliptic theta functions, and the parameters v, r/, v, K k are as defined by 
JKM. The zeros vj of Q(v) are given by a set of coupled nonlinear 
equations, obtained by noting that the left-hand side of (2.1) vanishes when 
v = v / ( j =  1 ..... r): 

N 2 , )  

. = _ ~ 7 2 .  ) , . ) J  j= ,  
j =  1 ..... r (2.3) 

Taking the logarithm of this equation, one obtains 

NF,(Cj) = -22~i!/ + 2v)~ + ~ F2(r j -  (&), 
i = 1  

where the lj are half-integers specifying the branches 
function, r  ~vjKk, and for the largest eigenvalues 

] 6 - 6 _ 1 1 = 1 ,  j=a,. . . ,r 

The function 

j = 1,..., r (2.4) 

of the logarithm 

(2.5) 

Fp(Cj) = in h(vj + p,)  
h(vj-  p11) 

(2.6) 

is chosen so that no cuts of Fp cross the real axis, and Fp(O) = - i~(p r 0). 
It is a "quasiperiodic" function, e.g., on the real axis it is periodic except for 
a linear term such that 

Fp(mZ) = - i (n + 1)rt 

(see JKM, Appendix B). 

(2.7) 
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In evaluating the transfer matrix eigenvalues, we shall write 

Q(v - 2q) 
T(v) = ~(v + . )  [1 + r(v)] 

Q(v) 
(2.8) 

where 

~ ( v )  - 
~(v - ~I) Q(v + 2t/) 

O(v + 'I) Q(v - 2t/) 
(2.9) 

Using Eq. (A13)  of  J K M ,  one finds 

T(v)=c N( 0((3! H(v+q)~X Q(v-2q) [1 +r(v)] (2.10) 

Hence, using the Fourier transforms in JKM, Appendix B, one arrives at 

1 r 
~ l n [ ( -  1) T(v)] 

is l l n [ Q ( _ v - 2 t / ) ]  1 
= - -  + ~ l n [ 1  + r(v)] + - -  2 + l n C + N  [_ Q(v) J 

+ 4 ~  

2 

sinh Ira(2 - c~)/2] c o s h { m E r  - (~ + 2 ) /2 ]  } sinh [m()o - r)J 

.... ~ m sinh(2mr) 

Now let us start again from Eq. (2.4). Following 
Woynarovitch, (11 we define the function 

(2.11) 

de Vega and 

ZN(~b) = Fl(~b) N N , = ,  

and its derivative 

RN(~) = d Z A ~ ) / d 4  (2.13) 

such that at the roots ~b.j 

Zu(~b/) = ~ (2.14) 

When N goes to infinity, the ~bj tend to a continuous distribution on 
the real axis with density NRu(O), and differentiating Eq. (2.12), one 
obtains a linear integral equation 

R~(O)---FI(O) 1 f~ 2-----/-- + )-f~x/ d~b' R~o(~b') F~(~b-~b') (2.15) 
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Similarly, one finds in the thermodynamic limit that 

and 

v2 1 l l n Q ( V - 2 t / ) -  i~ ~" F ~ ( i ( c ~ - 2 ) - @  
N Q(v) N N/=~ 

IZC 
- i r e -  d O ' R ~ ( r  (2.16) 

X ~ o o  - - r e  

r(v ) = exp [ 2~ziNZ N( i~ ) ] (2.17) 

Now Eq. (2.15) can be solved by a Fourier series expansion to give 

Roo(r ~ 4~coshrn)~ - dn , kl (2.18) 
m ~ - - o o  

where K 1 -  Kl(kl) and dn(z, k~) are elliptic functions of modulus k~, with 
K'l(kl)/K~(k~) = 2/r~. Substituting in Eq. (2.16) and using JKM, Eq. (B13), 
we find 

1 l n Q ( V - 2 t / ) - I  ( ) o - c ~ - i ~ ) +  V s i n h r n ( r - 2 ) s i n h m ( 2 - c 0  
(2.19) 

N Q(v) 2 m ~- 1 m sinh mT cosh m2 

and from Eq. (2.11) 

1 lnAo l n c + 2  ~ s i n h 2 m ( ' c - 2 ) [ c ~ 1 7 6  (2.20) 
N N ~ co m sinh 2mr cosh m2 

m = l  

This agrees with Baxter's result 17'81 for the bulk limit of the maximum 
eigenvalue. 

De Vega and Woynarovitch (1) show that one can derive similar 
integral equations valid for any N. The definitions (2.12) and (2.13) give 

RN(r F'I(r + g-25~ de' Rx(r F~(r - r 
7r 

+ = - :  de' g ~ ( r  r ~ 
2 1 ~ 

and hence 

R N ( O ) -  R~( r  

!; ==--= de' F;(r - r162  - R~(r  
2 t 

+ 7 .  d r 1 6 2 1 6 2  ~ 6 ( r162162  (2.22) 
2 t = . 
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This can be manipulated to give 

R ~ ( r  - R~o(r  = - 1 de '  P ( r  r  1 6 (r  - r  - R~. (r  

where 

with 

- t -O:3 

P(r ~ -,.~ 
m =  - - o c  

1 

sinh m('c - 22) 

4 cosh m2 sinh m(r - 2) '  

m=O 

mr 

(2.23) 

(2.24) 

(2.25) 

For the eigenvalue, if we define 

1 )r 
fN(v) = ~ l n [ ( -  1 T(v)] (2.26) 

and use (2.11) and (2.16) to define the limiting value j~(v), we have 

1 v2 f~ fN(v)-f~,(v)=Nln[l  + r(v)] - N -  dr162 
r: 

• - j - -  R N 

Y R ' - dr162162 ~(r )J (2.27) 

Now the analogue of the relation (2.35) of De Vega and Woynarovitch is 

f~ d@F'ffr162162162162 (2.28) 

which can be integrated to give 

I TM de' 
j . ~ F ' ( r 1 6 2 1 7 6  P ( r 1 6 2  

=iam (r + r kl + ~ - +  F,(r  + r + 2i dr162 (2.29) 

for [2 - zt + IIm r < v. 
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Substituting this result into Eq. (2.27), one obtains: 

1 v2 
f~v(v)-fo~(v) = ~ l n [ 1  + r(v)] - ~  

+ f~ Iiam 2) -- ~b'), 

+ - ~ + 2 i f  dO"P(O") - ~ 8 ( ~ ' - - ~ J - - R N ( O ' )  

(2.30) 

3. T H E  C R I T I C A L  R E G I O N  

At this point, let us specialize to the critical region of the eight-vertex 
model, in which case 

K-~ c~, K' ~7z/2 (3.1) 

and it becomes convenient to define new, rescaled variables corresponding 
to those used by De Vega and Woynarovitch(1): 

# = 2KO/rr = 2v 

y = -4i~ 

~(~) : z~(r 

dZN(#)/d# =- aN(V) = (~/2K) Rx(~b) 

- i(9(#, p2/2) = Fp((~) 

p(#) : (Tz/2K) P(~b) 

(3.2a) 

(3.2b) 

(3.2c) 

(3.2d) 

(3.2e) 

(3.2f) 

We shall also restrict our attention to the isotropic case, v = 0. Then our 
final equations for finite N translate to 

7~ oo j 

and 

fu(O) --foo(O) = ~ l n [ 1  + r(0)] + 2 @' arctanh(e ~u'/~) 
- o o  

(3.3) 

(3.4) 
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using the fact that 

K j K  ~ 2~/?' 

in the limit (3.1), and that 

f - # -  &b" P(~b") 

is O(1/K), and vanishes in the same limit. 

337 

3.1. Case 1: The Eigenvalue A o 

This case was discussed by JKM. The half-integers Ij are given by 

Ij = ( j - -  1/2), j = 1,..., r (3.5) 

and v=0 .  The roots are symmetrically distributed about ~b=0, with 
ZN( - -~ )  =0,  Zx(0) = 1/4, and Zu(Tr)= 1/2. In the critical region, we have 

Zx(l~i) = (i--  1/2)/N, i=  1 ..... r (3.6) 

at the root positions. We have to evaluate expressions of the form 

; J IN = -oo dlt' f ( p ' )  ~ ,  1 6(~'--  ~i) - -  0"N(12') (3.7) 

~1/2 1 r 1] (3.8) 
= '0  dzN f (P ' (ZN))[ -N i~=I6(Zu--Z~N)-- 

The sum over delta functions can be written as a Fourier series as follows: 

1 CS(ZN -- z~v ) ~ ( 1)" e 2~'mN:~" (3.9) 
N .  

whence one obtains 

IN = ( -- 1)"  d~' f ( S )  ~N(~') e 2~'N: '~ '~ (3.10) 
- - o o  m = - - o Q  

(mr 

The asymptotic root density, from Eq. (2.18), is given by 

t 
a~(~)  : (3.11) 

27 cosh(Tc#/7) 
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and hence 

Hamer 

1 
z~(#)  = - arctan(e "~'/~) (3.12) 

7Z 

Substituting the resummation (3.10) into Eq. (3.4), and replacing zN(/Y) by 
z~o(/Y), we find 

fN(O) --f~(O) ~ ~ In[ 1 + r(O)] 

+4 ~ (-l)l+m[1/adz'cos(2rcmNz')lntanTzz' (3.13) 
m = l  ~0  

where z ' =  z -  1/4, provided N/2 is even. But 

so that 

r( O ) = exp[ 27riNz N( O ) ] = e i~N/2 (3.14) 

1 ln[1 + r(0)] = 1 In 2 (3.15) 
N N 

for N/2 even; while in the Appendix it is shown that 

~, ( -1) l+m f~/4dz'cos(2rcmNz')lntan(r~z') 
m ~ l  

1 
- ~-~ in 2 + 2 ~ 5  + O(N-3 ) (3.16) 

Hence one obtains the final result 

fN(O) = fo~(0) ~ ~/6N 2 (3.17) 

For  the case N/2 odd, one finds that the term (1/N) ln[l+r(O)] 
diverges to negative infinity as one approaches the critical region, while the 
term 

( l /N) ln l -Q( -  2q)/Q(0)] 

diverges to positive infinity. This merely reflects the fact that the point v = 0 
is a root, and Q(0) vanishes. We have not yet been able to derive an 
explicit result for this case. 

It remains to show that any corrections due to the difference 

[z~(~')- z~(~')] 
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are negligible in comparison to the leading-order term, Eq. (3.17), as 
N--* o0. In a previous paper ~3) we gave arguments to this effect for the case 
of the X X Z  model; but recent work by Woynarovitch and Eckle (9~ has 
shown that these arguments are not strictly correct, although the con- 
clusion still holds. For our present purposes, we shall simply assume the 
corrections are negligible, and refer to Woynarovitch and Eckle (9) for a 
discussion of how to estimate the nonleading correction terms. 

3.2. Case 2: The Eigenvalue A 1 

There is another eigenvalue A l equal in magnitude and opposite in 
sign to A 0 in the thermodynamic limit, as discussed by Baxter Is) and JKM. 
For this case the half-integers are given by 

I j=  ( j +  1/2), j =  1 ..... r (3.18) 

except for one root at r = ~z. We have 

1 1 1 1 1 
Z N ( - ~ ) = ~ ,  ZN(0) = ~ + ~--~, ZN(~r) = ~ + 2-- ~ 

The asymptotic root density and eigenvalue in the thermodynamic limit 
N ~  oo are the same as for A0, so we may proceed directly to look at the 
finite-size corrections. In this case, 

hNi=l 

(~/2 dz'x f(t~'(z'x) ) -~ i~= 6(z'x - z'~ ) - 1 (3.20) 
~-"0 1 

where Z~v = ZN-- I/(2N), ~jv=-'i i/N, and after Fourier expanding, we have 

+oc~ f ~  I x =  ~ dp' f (# ' )  crN(p') exp[2~imNz'N(#')] (3.22) 

(mr 

Substituting this resummation into Eq. (2.30), and replacing z'u(l~') by 
z'~(p'), we find 

1 
f ~ ( 0 ) - f ~ ( 0 ) ~ N l n [ l + r ( 0 ) ] - 4  ~ ( - 1 )  "N/2 

m=l 
f 1/4 

x dz" cos(2rcmNz") In tan(fez") + iC (3.23) 
~0 
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where z" = z' - 1/4, and C is a constant discussed below. Now 

r( O ) = --e izrN/2 (3.24) 

so the natural choice in this case is to take N/2 odd, when 

f N ( O ) - - f ~ ( o ) ~ l l n 2 - - 4  ~ ( - - 1 )  m 
m = l  

x ~1/4 dz" cos (2zmNz")  In tan(fez") + ic (3.25) 
"~0 

which, using the results of the Appendix, reduces to 

fu(O) -- f ~  (0) ~ -- rc/3N 2 + iC (3.26) 

This result is subject to the same assumption as in case 1, namely that 
corrections due to [z~v(#)-z ' ( /~)]  are smaller than O(N-2). 

The constant C, due to an annoying technicality, cannot be directly 
computed in the critical region. The origin of the difficulty lies in the linear, 
or nonperiodic, terms appearing in the Fourier expansions of some of the 
elliptic and Fp functions. These are not properly accounted for in taking the 
critical limit, Eqs. (3.1)-(3.4). By going back to Eq. (2.30) and looking at 
the linear terms more carefully, one may correctly obtain C =  - r t / N  for 
this case. Thus 

ln(A1/Ao) ~ o ~  - i ~  

i.e., A 1 and Ao have opposite signs, in agreement with the results of 
Baxter (8) and JKM. 

4. C O N C L U S I O N S  

Assuming the hypothesis of conformal invariance in the critical region, 
it has been shown by B16teetal .  ~176 and Affleck (11) that the finite-size 
scaling amplitude for the maximum eigenvalue of the transfer matrix is 
given by 

f x(O ) -- f ~ (0) U ~ ~ ~zc/6N2 (4.1) 

for periodic boundary conditions, where c is the conformal anomaly or 
central charge of the Viasoro algebra. Our result (3.17) implies c = 1 for the 
eight-vertex model, in agreement with that obtained for the X X Z  
Hamiltonian. (2"3) The amplitude for the eigenvalue A1 appears to be the 
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same as that for the "kink mass" in the XXZ model, which we argued (3) is 
connected with the exponent q = 1/4 by conformal invariance. 

Some numerical studies have recently been done on the eight-vertex 
model, ~2) which confirm the result (3.17). 

It should certainly be possible to derive analytic expressions for the 
finite-size scaling behavior of other eigenvalues of the transfer matrix, 
involving complex roots, but this is a more difficult algebraic task. 

A P P E N D I X  

We want to find the asymptotic behavior of the integral 

~ 1/4 

Is = dz cos(4~mz) In tan ~z (A1) 
"0 

for large m. Integrating by parts, one finds 

- 1  ~1/4 sin(4rrmz) - - 1 (  1 1 (__l)m 2) 
dz - 1 - ~ +  . . . . .  + (A2) 

11 = ~m ~o sin(27cz) 2Tom 5 2m - 1 

The behavior of this series partial sum may be found using the Euler 
summation formula for alternating series, c13) 

f ( 1 ) - - f ( 2 )  + f ( 3 )  . . . .  + (-- 1)x- 1 f (x)  

l[-I 22--1 1 
= c o n s t + ( - - 1 ) x -  b 2 f ( x ) + ~ B l i f ( x ) " '  (A3) 

w i t h f ( x ) =  1 / (2x-  1) and x=n:  

1 1 ( - 1 )  "-1 ( - 1 )  n 
- - 3 + 5  . . . .  -~ 2 n - 1  c o n s t §  ) FO(n 2) (A4) 

But the constant term is known, 

( - 1 ) ' - 1 -  ~ 
(AS) 

and so one obtains the result 

i i = - l + ~ + O ( r n  3) 
8m 81rm 

(A6) 
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Now consider the expression in Eq. (47) of the text: 

[ 1/4 
i2 = ( _  1)1 +m dz cos(2z:mNz) In tan ~z (A7) 

r n = l  ~0 

1 ~ ( - 1 )  ~- 1 ~ ( - 1 )  m 

=4--N~1 m 2--N:m~__ ' m2 +O(N 3) (AS) 

using (A6), with N/2 even; hence the result quoted in Eq. (47). For the case 
?(/2 odd, we have 

1 ~ ( - 1 )  m 1 ~ 1 

I2=4--N~1 -m 2zcN2~l_~+O( u 3) (A9) 

which gives Eq. (57). 
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